
Unit tests with Java and Spock
Write readable and maintainable tests

Adrien CAUBEL

February 8, 2022

Table of contents

1 Overview and configurations
2 Writing tests with Spock
3 Data Driven Testing with Spock
4 Interaction Based Testing
5 Use third-party libraries

Part I

Overview and configurations

Unit tests with Java and Spock

Spock concisely

Plan
1 Spock concisely

2 Maven configurations
Project configuration
JUnit 5 dependency
Groovy dependency
Spock dependency
Full configuration

3 Eclipse Configurations

4 Checkout the configuration
Create JUnit test
Create Spock test

5 Integration in GitLab CI
Example
Configuration

Unit tests with Java and Spock

Spock concisely

Spock concisely

Spock is
• a testing and specification framework
• a beautiful and highly expressive specification language

Spock is compatible with
• JUnit thanks to the JUnit Runner
• most IDEs
• most build tools
• most continuous integration servers

https://spockframework.org/

https://spockframework.org/

Unit tests with Java and Spock

Maven configurations

Plan
1 Spock concisely

2 Maven configurations
Project configuration
JUnit 5 dependency
Groovy dependency
Spock dependency
Full configuration

3 Eclipse Configurations

4 Checkout the configuration
Create JUnit test
Create Spock test

5 Integration in GitLab CI
Example
Configuration

Unit tests with Java and Spock

Maven configurations

Project configuration

Project configuration

<build>
<plugins>

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.9.0</version>
<configuration>

<source>17</source>
<target>17</target>

</configuration>
</plugin>

</plugins>
</build>

Unit tests with Java and Spock

Maven configurations

JUnit 5 dependency

JUnit 5 dependency

<dependency>
<groupId>org.junit.jupiter</groupId>
<artifactId>junit-jupiter-engine</artifactId>
<version>5.8.2</version>
<scope>test</scope>

</dependency>
<dependency>

<groupId>org.junit.jupiter</groupId>
<artifactId>junit-jupiter-api</artifactId>
<version>5.8.2</version>
<scope>test</scope>

</dependency>

Unit tests with Java and Spock

Maven configurations

JUnit 5 dependency

JUnit 5 dependency

<build>
<plugins>

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<version>3.0.0-M1</version>
<configuration>

<includes>
<include>**/*Test</include>
<include>**/*Spec</include>

</includes>
</configuration>

</plugin>
</plugins>

</build>

Unit tests with Java and Spock

Maven configurations

Groovy dependency

Groovy dependency

<dependency>
<groupId>org.codehaus.groovy</groupId>
<artifactId>groovy</artifactId>
<version>3.0.9</version>

</dependency>

Unit tests with Java and Spock

Maven configurations

Groovy dependency

Configuration Groovy

<build>
<plugins>

<plugin>
<groupId>org.codehaus.gmavenplus</groupId>
<artifactId>gmavenplus-plugin</artifactId>
<version>1.13.1</version>
<executions>

<execution>
<goals>

<goal>compileTests</goal>
</goals>

</execution>
</executions>

</plugin>
</plugins>

</build>

Unit tests with Java and Spock

Maven configurations

Spock dependency

Spock dependency
<dependencyManagement>

<dependencies>
<dependency>

<groupId>org.spockframework</groupId>
<artifactId>spock-bom</artifactId>
<version>2.0-groovy-3.0</version>
<type>pom</type>
<scope>import</scope>

</dependency>
</dependencies>

</dependencyManagement>

<dependency>
<groupId>org.spockframework</groupId>
<artifactId>spock-core</artifactId>

</dependency>

Unit tests with Java and Spock

Maven configurations

Full configuration

Full configuration

Based on the documentation
https://gist.github.com/adrien1212/
2497ad62af0be75e28dc4dce1e3c1c3d

Documentation
https://github.com/groovy/GMavenPlus/wiki/Examples#
spock-2-and-junit

https://gist.github.com/adrien1212/2497ad62af0be75e28dc4dce1e3c1c3d
https://gist.github.com/adrien1212/2497ad62af0be75e28dc4dce1e3c1c3d
https://github.com/groovy/GMavenPlus/wiki/Examples#spock-2-and-junit
https://github.com/groovy/GMavenPlus/wiki/Examples#spock-2-and-junit

Unit tests with Java and Spock

Eclipse Configurations

Plan
1 Spock concisely

2 Maven configurations
Project configuration
JUnit 5 dependency
Groovy dependency
Spock dependency
Full configuration

3 Eclipse Configurations

4 Checkout the configuration
Create JUnit test
Create Spock test

5 Integration in GitLab CI
Example
Configuration

Unit tests with Java and Spock

Eclipse Configurations

Eclipse Configurations

Disclaimer
This configuration is done in January 2022 the Eclipse version
12-2022

1 Install Groovy Development Tools to
• Compile Groovy script before run it in test
MySpec.groovy → Right Click → Run As → Junit Test

• Else, you need to compile your Groovy script each time with Maven

2 Configure Groovy compiler
• Go to Windows → Preferences → Groovy : Compiler
• Switch to 3.0.9 compiler

Unit tests with Java and Spock

Eclipse Configurations

Eclipse Configurations
Configure the output folder for the Groovy tests like Java tests
• Output folder

• Build Path → Configure Build Path → Source →
monprojet/src/test/groovy

• Setup the output folder

• Contains test sources
• Set to Yes

Unit tests with Java and Spock

Checkout the configuration

Plan
1 Spock concisely

2 Maven configurations
Project configuration
JUnit 5 dependency
Groovy dependency
Spock dependency
Full configuration

3 Eclipse Configurations

4 Checkout the configuration
Create JUnit test
Create Spock test

5 Integration in GitLab CI
Example
Configuration

Unit tests with Java and Spock

Checkout the configuration

Create JUnit test

Create JUnit test

Create a new test classe
MyProject

src/main/java
src/test/java

FirstTest.java
pom.xml

import
org.junit.jupiter.api.Assertions;

import org.junit.jupiter.api.Test;

public class FirstTest {
@Test
public void firstAssert() {

Assertions
.assertEquals(10, 10);

}
}

Unit tests with Java and Spock

Checkout the configuration

Create JUnit test

Launch the test with Maven

• Run the following command mvn clean install test

• and check the result

[INFO] --
[INFO] T E S T S
[INFO] --
[INFO] Running FirstTest
[INFO] Tests run: 1, Failures: 0, Errors: 0, [...]
[INFO]
[INFO] Results:
[INFO]
[INFO] Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

Unit tests with Java and Spock

Checkout the configuration

Create Spock test

Create Spock test

To create a test with Spock we need to :
• Create a new directory /src/test/groovy
• Create a Groovy script SecondSpec.groovy

Create a new test classe
MonProjet

src/main/java
src/test/java

FirstTest.java
src/main/groovy

SecondSpec.groovy
pom.xml

import spock.lang.Specification

class SecondSpec extends
Specification {
def "one plus one equal two"() {
expect:
1 + 1 == 2

}
}

Unit tests with Java and Spock

Checkout the configuration

Create Spock test

Launch the test with Maven

• Run the following command mvn clean install test

• and check the results (JUnit + Spock)

[INFO] ---
[INFO] T E S T S
[INFO] ---
[INFO] Running FirstTest
[INFO] Tests run: 1, Failures: 0, Errors: 0, [...]
[INFO] Running SecondSpec
[INFO] Tests run: 1, Failures: 0, Errors: 0, [...]
[INFO]
[INFO] Results:
[INFO]
[INFO] Tests run: 2, Failures: 0, Errors: 0, Skipped: 0

Unit tests with Java and Spock

Checkout the configuration

Create Spock test

Launch the test with Eclipse

This step ensures you that you will be able to run Groovy test without
recompiling the Maven project after each modification.
• Run the SecondSpec test with Eclipse

• SecondSpec.groovy → Right Click → Run As →
Junit Test

• Check that the test succeeds
• Set the expectation 1 + 1 == 2 to 1 + 1 == 3
• Run again the SecondSpec test with Eclipse

• SecondSpec.groovy → Right Click → Run As →
Junit Test

• Check that the test fails

Unit tests with Java and Spock

Integration in GitLab CI

Plan
1 Spock concisely

2 Maven configurations
Project configuration
JUnit 5 dependency
Groovy dependency
Spock dependency
Full configuration

3 Eclipse Configurations

4 Checkout the configuration
Create JUnit test
Create Spock test

5 Integration in GitLab CI
Example
Configuration

Unit tests with Java and Spock

Integration in GitLab CI

Example

Example
Spock tests, like all JUnit tests, are managed by the CI/CD provided
by GitLab.

Unit tests with Java and Spock

Integration in GitLab CI

Configuration

Configuration

This integration does not require any addition to the default job
https://docs.gitlab.com/ee/ci/unit_test_reports.
html#maven

java:
stage: test
script:
- mvn verify

artifacts:
when: always
reports:
junit:
- target/surefire-reports/TEST-*.xml
- target/failsafe-reports/TEST-*.xml

https://docs.gitlab.com/ee/ci/unit_test_reports.html#maven
https://docs.gitlab.com/ee/ci/unit_test_reports.html#maven

Part II

Writing tests with Spock

Unit tests with Java and Spock

Introduction

Plan
6 Introduction

7 Fields
Fields and Shared Fields

8 Fixture Methods

9 Feature Methods
Conceptual phases
Blocks

Blocks’ advantages
When and Then Blocks
When-Then block VS Expect block
Cleanup block
Where block

Comparison of JUnit test and Spock test

10 Helper methods

11 Assert multiple expectations together

Unit tests with Java and Spock

Introduction

Documentation
https:
//spockframework.org/spock/docs/2.0/index.html

This part summarizes the section Spock Primer of the documentation

https://spockframework.org/spock/docs/2.0/index.html
https://spockframework.org/spock/docs/2.0/index.html

Unit tests with Java and Spock

Fields

Plan
6 Introduction

7 Fields
Fields and Shared Fields

8 Fixture Methods

9 Feature Methods
Conceptual phases
Blocks

Blocks’ advantages
When and Then Blocks
When-Then block VS Expect block
Cleanup block
Where block

Comparison of JUnit test and Spock test

10 Helper methods

11 Assert multiple expectations together

Unit tests with Java and Spock

Fields

Fields and Shared Fields

Fields and Shared Fields
• Objects stored into instance fields are not shared between

feature methods
• To share an object between feature methods declare a @Shared

field

def number = 5;

def "first"() {
when: number = 6
then: number == 6

}

def "second"() {
expect: number == 5

}

@Shared number = 5;

def "first"() {
when: number = 6
then: number == 6

}

def "second"() {
expect: number == 6

}

Unit tests with Java and Spock

Fixture Methods

Plan
6 Introduction

7 Fields
Fields and Shared Fields

8 Fixture Methods

9 Feature Methods
Conceptual phases
Blocks

Blocks’ advantages
When and Then Blocks
When-Then block VS Expect block
Cleanup block
Where block

Comparison of JUnit test and Spock test

10 Helper methods

11 Assert multiple expectations together

Unit tests with Java and Spock

Fixture Methods

Fixture Methods

• Responsible for setting up and cleaning up the environment
• All fixture methods are optional

• Equivalent to JUnit

Spock JUnit 5
setup() @BeforeEach
cleanup() @AfterEach
setupSpec() @BeforeAll
cleanupSpec() @AfterAll

def setupSpec() // runs before the first feature method
def setup() // runs before every feature method
def cleanup() // runs after every feature method
def cleanupSpec() // runs after the last feature method

Unit tests with Java and Spock

Fixture Methods

Fixture Methods

• setupSpec() and cleanupSpec() cannot reference field
annoted with @Shared

@Shared number

def setupSpec() {
number = 7

}

def "second"() {
expect: number == 7

}

Unit tests with Java and Spock

Feature Methods

Plan
6 Introduction

7 Fields
Fields and Shared Fields

8 Fixture Methods

9 Feature Methods
Conceptual phases
Blocks

Blocks’ advantages
When and Then Blocks
When-Then block VS Expect block
Cleanup block
Where block

Comparison of JUnit test and Spock test

10 Helper methods

11 Assert multiple expectations together

Unit tests with Java and Spock

Feature Methods

Conceptual phases

Conceptual phases
Conceptually, a feature method consists of four phases:

1 Set up the feature’s fixture - [Given]
2 Provide a stimulus to the system under specification - [When]
3 Describe the response expected from the system - [Then]
4 Clean up the feature’s fixture

def "pushing an element on the stack"() {
// blocks go here

}

Name your tests
• Choose a good name
• Free to write : string

Unit tests with Java and Spock

Feature Methods

Blocks

Blocks
The feature methods are structured in the following blocks
• given
• when
• then
• expect
• cleanup
• where

Each block is mapped to a conceptual phases of a feature method

Unit tests with Java and Spock

Feature Methods

Blocks

Blocks’ advantages

• Before you could follow the
• Given-When-Then structure
• Arrange-Act-Assert structure
• or another homemade structure

• Now, we have a common structure for testing

Advantages
• Tests are structured
• These structure is common to all developers
• Improve the readability and maintainability of tests
• ⇒ Tests have their own "grammar"

Unit tests with Java and Spock

Feature Methods

Blocks

When and Then Blocks

• The when and then blocks always occur together
• A feature method may contain multiple pairs of when-then blocks.

when: // stimulus
then: // response

when:
stack.push(elem)

then:
!stack.empty
stack.size() == 1
stack.peek() == elem

Unit tests with Java and Spock

Feature Methods

Blocks

Conditions
• then and expect receive conditions
• Conditions are written as plain boolean expressions
• When condition is violated Spock provide a feedback

Condition not satisfied:

stack.size() == 2
| | |
| 1 false
[push me]

There are two types of conditions
• implicit conditions

• essential ingredient of then blocks and expect blocks
• expressions in these blocks are implicitly treated as conditions

• explicit conditions
• to use conditions in other places
• use Groovy’s assert keyword

Unit tests with Java and Spock

Feature Methods

Blocks

When-Then block VS Expect block
An expect block
• is more limited than a then block
• it may only contain conditions and variable definitions
• usefull to describe stimulus and expected response in a single

expression

when:
def x = Math.max(1, 2)

then:
x == 2

// Prefered

expect:
Math.max(1, 2) == 2

• use when-then to describe methods with side effects
• and expect to describe purely functional methods.

Unit tests with Java and Spock

Feature Methods

Blocks

Cleanup block
• Is used to free any resources used by a feature method
• Is run even if the feature method has produced an exception

given:
def file = new File("/some/path")
file.createNewFile()
// ...

cleanup:
file.delete()

• Object-level specifications usually don’t need a cleanup method
• Automatically reclaimed by the garbage collector
• Might use a cleanup block

• to clean up the file system
• to close a database connection
• to shut down a network service

Unit tests with Java and Spock

Feature Methods

Blocks

Where block
• Always comes last in a method
• May not be repeated
• Used to write data-driven feature methods

def "computing the maximum of two numbers"() {
expect:
Math.max(a, b) == c

where:
a << [5, 3]
b << [1, 9]
c << [5, 9]

}

This where block creates two "versions" of the feature method
• First with a = 5, b = 1 and c = 5
• Second with a = 3, b = 9 and c = 9

Unit tests with Java and Spock

Feature Methods

Comparison of JUnit test and Spock test

Comparison of JUnit test and Spock test
@Test
public void givenTwoAndTwo_whenAdding_thenIsFour() {

int first = 2, second = 2; // Given
int result = first + second; // When
assertTrue(result == 4) // Then

}

def "two plus two should equal four"() {
given:

int left = 2
int right = 2

when:
int result = left + right

then:
result == 4

}

Unit tests with Java and Spock

Helper methods

Plan
6 Introduction

7 Fields
Fields and Shared Fields

8 Fixture Methods

9 Feature Methods
Conceptual phases
Blocks

Blocks’ advantages
When and Then Blocks
When-Then block VS Expect block
Cleanup block
Where block

Comparison of JUnit test and Spock test

10 Helper methods

11 Assert multiple expectations together

Unit tests with Java and Spock

Helper methods

Helper methods

def "offered PC matches preferred configuration"() {
when:
def pc = shop.buyPc()

then:
pc.vendor == "Sunny"
pc.clockRate >= 2333
pc.ram >= 4096
pc.os == "Linux"

}

• Avoid grow large method
• Avoid duplicated code
• ⇒ Introduce one or more helper methods to factoring out

Unit tests with Java and Spock

Helper methods

Helper methods
Two points need to be considered when creating a helper method
• implicit conditions must be turned into explicit conditions

⇒ use the assert keyword
• must have return type void

def "offered PC matches preferred configuration"() {
when:
def pc = shop.buyPc()

then:
matchesPreferredConfiguration(pc)

}

void matchesPreferredConfiguration(pc) {
assert pc.vendor == "Sunny"
assert pc.clockRate >= 2333
assert pc.ram >= 4096
assert pc.os == "Linux"

}

Unit tests with Java and Spock

Assert multiple expectations together

Plan
6 Introduction

7 Fields
Fields and Shared Fields

8 Fixture Methods

9 Feature Methods
Conceptual phases
Blocks

Blocks’ advantages
When and Then Blocks
When-Then block VS Expect block
Cleanup block
Where block

Comparison of JUnit test and Spock test

10 Helper methods

11 Assert multiple expectations together

Unit tests with Java and Spock

Assert multiple expectations together

Assert multiple expectations together
• Normal expectations fail the test on the first failed assertions
• Sometimes it is helpful to collect these failures before failing the

test

def "my test"() {
expect:
verifyAll {

2 == 3
4 == 5

}
}

def "my test"() {
expect:

2 == 3
4 == 5

}

condition not satisfed :
2 == 3
condition not satisted :
4 == 5

condition not satisfed :
2 == 3

Part III

Data Driven Testing with Spock

Unit tests with Java and Spock

Introduction

Plan

12 Introduction
Definition
Documentation

13 Data Tables

14 Isolated Execution of Iterations

15 Syntactic Variations
Double Pipe
Data Pipes

Unit tests with Java and Spock

Introduction

Definition

Definition

Data Driven Testing
• Is a software testing method in which test data is stored in table

or spreadsheet format
• Is useful because we provide multiple data sets for a single test

and an individual test is created with each data

Unit tests with Java and Spock

Introduction

Documentation

Documentation

Documentation
https:
//spockframework.org/spock/docs/2.0/index.html

This part summarizes the section Data Driven Testing of the
documentation

https://spockframework.org/spock/docs/2.0/index.html
https://spockframework.org/spock/docs/2.0/index.html

Unit tests with Java and Spock

Data Tables

Plan

12 Introduction
Definition
Documentation

13 Data Tables

14 Isolated Execution of Iterations

15 Syntactic Variations
Double Pipe
Data Pipes

Unit tests with Java and Spock

Data Tables

Data Tables

class MathSpec extends Specification {
def "maximum of two numbers"(int a, int b, int c) {
expect:
Math.max(a, b) == c

where:
a | b | c
1 | 3 | 3
7 | 4 | 7
0 | 0 | 0

}
}

• The first line is the table header, declares the data variables
• The subsequent lines are table rows, the corresponding values
• For each row, an iteration of feature method will get executed

Unit tests with Java and Spock

Isolated Execution of Iterations

Plan

12 Introduction
Definition
Documentation

13 Data Tables

14 Isolated Execution of Iterations

15 Syntactic Variations
Double Pipe
Data Pipes

Unit tests with Java and Spock

Isolated Execution of Iterations

Isolated Execution of Iterations

Iterations are isolated from each other
• Each iteration gets its own instance of the specification class
• The setup and cleanup methods will be called before and after

each iteration

Unit tests with Java and Spock

Syntactic Variations

Plan

12 Introduction
Definition
Documentation

13 Data Tables

14 Isolated Execution of Iterations

15 Syntactic Variations
Double Pipe
Data Pipes

Unit tests with Java and Spock

Syntactic Variations

Double Pipe

Double Pipe
class MathSpec extends Specification {
def "maximum of two numbers"() {
expect:
Math.max(a, b) == c

where:
a | b || c
1 | 3 || 3
7 | 4 || 7
0 | 0 || 0

}
}

• Method parameters can be ommited
• You can also omit some parameters and specify others, for

example to have them typed
• Inputs and expected outputs can be separated with a double

pipe symbol

Unit tests with Java and Spock

Syntactic Variations

Data Pipes

Data Pipes

...
where:
a << [1, 7, 0]
b << [3, 4, 0]
c << [3, 7, 0]

• Connects a data variable to a data provider
• the data provider holds all values for the variable, one per iteration

• Any object that Groovy knows how to iterate over can be used as
a data provider

• Collection
• String
• Iterable
• objects implementing the Iterable contract

Part IV

Interaction Based Testing

Unit tests with Java and Spock

Introduction

Plan
16 Introduction

Definition
Documentation
When we need Mocking
Mock implementation with Spock

17 Mocking
Definition
The application
Creating Mock Objects
Injecting Mock Objects into Code Under Specification
Creating the test

18 Stubbing
Definition
Returning Fixed Values
Returning Sequences of Values
Computing Return Values
Chaining Method Responses
Returning a default response

Unit tests with Java and Spock

Introduction

Definition

Definition

Interaction Based Testing
• Checks how different objects interact with each other
• Help verify the functionality of code that depends on the

interaction between multiple classes or interfaces
• The interaction testing uses a mock object to check that the

expected behavior happened

Unit tests with Java and Spock

Introduction

Documentation

Documentation

Documentation
https:
//spockframework.org/spock/docs/2.0/index.html

This part summarizes the section Interaction Based Testing of the
documentation

https://spockframework.org/spock/docs/2.0/index.html
https://spockframework.org/spock/docs/2.0/index.html

Unit tests with Java and Spock

Introduction

When we need Mocking

When we need Mocking

Mock object is useful when you
• want to test interactions between a class under test and a

particular interface.
• the execution of a method passes outside of that method, into

another object : dependencies
• have complicated object as a parameter, and it would be a pain

to simply instantiate this object

See also :
https://odetocode.com/blogs/scott/archive/2008/05/
01/mocks-its-a-question-of-when.aspx

https://odetocode.com/blogs/scott/archive/2008/05/01/mocks-its-a-question-of-when.aspx
https://odetocode.com/blogs/scott/archive/2008/05/01/mocks-its-a-question-of-when.aspx

Unit tests with Java and Spock

Introduction

Mock implementation with Spock

Mock implementation with Spock

• Java world provides of popular and mature mocking frameworks
• Mockito
• EasyMock
• ...

• These frameworks can be used together with Spock
• But Spock integrates its own mocking framework

• all features of Spock’s mocking framework work both for testing
Java and Groovy code

Unit tests with Java and Spock

Mocking

Plan
16 Introduction

Definition
Documentation
When we need Mocking
Mock implementation with Spock

17 Mocking
Definition
The application
Creating Mock Objects
Injecting Mock Objects into Code Under Specification
Creating the test

18 Stubbing
Definition
Returning Fixed Values
Returning Sequences of Values
Computing Return Values
Chaining Method Responses
Returning a default response

Unit tests with Java and Spock

Mocking

Definition

Definition

Definition
• Mock objects are simulated objects that mimic the behavior of

real objects

Unit tests with Java and Spock

Mocking

The application

The application

Publisher
- subscribers : List<Subscriber>
- messageCount : int

+ send(message : String) void

<<interface>>
Subscriber

+ receive(message : String)

void send(String message){
for(Subscriber s : subscribers) {

s.receive(message);
}
messageCount++

}

Unit tests with Java and Spock

Mocking

Creating Mock Objects

Creating Mock Objects

• We create two fake implementations of Subscriber

def subscriber = Mock(Subscriber)
def subscriber2 = Mock(Subscriber)

Or

Subscriber subscriber = Mock()
Subscriber subscriber2 = Mock()

Unit tests with Java and Spock

Mocking

Injecting Mock Objects into Code Under Specification

Injecting Mock Objects into Code Under Specification

• We set the Publisher with the fake Subscriber

class PublisherSpec extends Specification {
Publisher publisher = new Publisher()
Subscriber subscriber = Mock()
Subscriber subscriber2 = Mock()

def setup() {
publisher.subscribers << subscriber // <=> List.add()
publisher.subscribers << subscriber2

}

Unit tests with Java and Spock

Mocking

Creating the test

Creating the test

def "should send messages to all subscribers"() {
when:
publisher.send("hello")

then:
1 * subscriber.receive("hello")
1 * subscriber2.receive("hello")

}

• When the publisher sends a ’hello’ message
• Then both subscribers should receive that message exactly once

Unit tests with Java and Spock

Stubbing

Plan
16 Introduction

Definition
Documentation
When we need Mocking
Mock implementation with Spock

17 Mocking
Definition
The application
Creating Mock Objects
Injecting Mock Objects into Code Under Specification
Creating the test

18 Stubbing
Definition
Returning Fixed Values
Returning Sequences of Values
Computing Return Values
Chaining Method Responses
Returning a default response

Unit tests with Java and Spock

Stubbing

Definition

Stubbing
• Is the act of making collaborators respond to method calls in a

certain way
• We don’t care if and how many times the method is going to be

called
• we just want it to return some value
• or perform some side effect

Example
Whenever the subscriber receives a message, make it respond with
’ok’

Unit tests with Java and Spock

Stubbing

Returning Fixed Values

Returning Fixed Values

• Whenever the subscriber receives a message, make it respond
with ’ok’

subscriber.receive(_) >> "ok"

• Return different values for different invocations
• ok whenever message1 is received
• fail whenever message2 is received

subscriber.receive("message1") >> "ok"
subscriber.receive("message2") >> "fail"

Unit tests with Java and Spock

Stubbing

Returning Sequences of Values

Returning Sequences of Values

• Use triple-right-shift >>>

• Return different values on successive invocations
• ok for the first invocation
• error for the second invocation
• error for the third invocation
• ok for all remaining invocations

subscriber.receive(_) >>> ["ok", "error", "error", "ok"]

Unit tests with Java and Spock

Stubbing

Computing Return Values

Computing Return Values
• Return value based on the method’s argument

• ok if the message is more than three characters
• fail otherwise

subscriber.receive(_) >>
{ args -> args[0].size() > 3 ? "ok" : "fail" }

Or

subscriber.receive(_) >>
{ String message -> message.size() > 3 ? "ok" : "fail" }

• Method arguments will be mapped one-by-one to closure
parameters

• Behaves the same as the previous one, but is arguably more
readable

Unit tests with Java and Spock

Stubbing

Chaining Method Responses

Chaining Method Responses

• Method responses can be chained
• ok for the first invocation
• fail for the second invocation
• ok for the third invocation
• throw InternalError for the fourth invocation
• ok for any further invocation

subscriber.receive(_)
>>> ["ok", "fail", "ok"]
>> { throw new InternalError() }
>> "ok"

Unit tests with Java and Spock

Stubbing

Returning a default response

Returning a default response

• Don’t really care what you return
• But you must return a non-null value
• Use _

subscriber.receive(_) >> _

• This will use the same logic to compute a response as Stub

Part V

Use third-party libraries

Unit tests with Java and Spock

Introduction

Plan

19 Introduction

20 Selenium
Include Maven dependency
Preparing our tests
Writing out tests

Unit tests with Java and Spock

Introduction

Introduction

Use framework
• As with Junit, we can use third-party framework
• Spock accept their uses
• By adding the Maven dependency

Unit tests with Java and Spock

Selenium

Plan

19 Introduction

20 Selenium
Include Maven dependency
Preparing our tests
Writing out tests

Unit tests with Java and Spock

Selenium

Include Maven dependency

Include Maven dependency

<dependency>
<groupId>org.seleniumhq.selenium</groupId>
<artifactId>selenium-java</artifactId>
<version>4.1.1</version>

</dependency>

Unit tests with Java and Spock

Selenium

Preparing our tests

Preparing our tests
class SeleniumSpec extends Specification {

@Shared WebDriver driver

def setupSpec() {
System.setProperty("webdriver.gecko.driver",

"D:/.../geckodriver.exe");
driver = new FirefoxDriver()

}
def cleanupSpec() {

if(driver != null) { driver.close() }
}

/* Methodes de test */
}

• driver is a shared field
• setupSpec is run once before the first test
• cleanupSpec is run once after the last test

Unit tests with Java and Spock

Selenium

Writing out tests

Writing out tests

def "selenium integration with spock"() {
when:
driver.get "https://spockframework.org/"

then:
driver.title == "Spock"

}

def "selenium integration with spock bis"() {
when:
driver.get "https://selenium.dev"

then:
driver.title == "Selenium"

}

	Overview and configurations
	Spock concisely
	Maven configurations
	Project configuration
	JUnit 5 dependency
	Groovy dependency
	Spock dependency
	Full configuration

	Eclipse Configurations
	Checkout the configuration
	Create JUnit test
	Create Spock test

	Integration in GitLab CI
	Example
	Configuration

	Writing tests with Spock
	Introduction
	Fields
	Fields and Shared Fields

	Fixture Methods
	Feature Methods
	Conceptual phases
	Blocks
	Comparison of JUnit test and Spock test

	Helper methods
	Assert multiple expectations together

	Data Driven Testing with Spock
	Introduction
	Definition
	Documentation

	Data Tables
	Isolated Execution of Iterations
	Syntactic Variations
	Double Pipe
	Data Pipes

	Interaction Based Testing
	Introduction
	Definition
	Documentation
	When we need Mocking
	Mock implementation with Spock

	Mocking
	Definition
	The application
	Creating Mock Objects
	Injecting Mock Objects into Code Under Specification
	Creating the test

	Stubbing
	Definition
	Returning Fixed Values
	Returning Sequences of Values
	Computing Return Values
	Chaining Method Responses
	Returning a default response

	Use third-party libraries
	Introduction
	Selenium
	Include Maven dependency
	Preparing our tests
	Writing out tests

